The Outlook for Advanced Post-Combustion CCS Processes

Edward S. Rubin Department of Engineering and Public Policy Department of Mechanical Engineering Carnegie Mellon University Pittsburgh, Pennsylvania

> Presentation to the CEIC Advisory Board Pittsburgh, Pennsylvania October 22, 2014

Background

- Our research group at Carnegie Mellon has been looking at and modeling a variety of current and advanced technologies for carbon capture and storage (CCS) as a greenhouse gas mitigation option for power plants using fossil fuels or biomass, including:
 - Pre-combustion
 - · Post-combustion, and
 - Oxy-combustion processes for CO₂ capture

Advanced Capture Technology Models Under Development*

- Post-Combustion Capture
 - Advanced membranes
 - Calcium looping
 - Solid sorbents
 - Amine-based
 - Activated carbon-based
 - Metal organic frameworks
 - Ionic liquids
- Oxy-Combustion Capture
 - Oxygen production
 - Carbon processing unit
 - Gas recycle options
- Pre-Combustion Capture
 - Chemical looping
 - Ionic liquids
 - Sorbent-enhanced WGS

*In projects supported by DOE/NETL and Stanford/GCE

Objective of This Talk

- Focus on post-combustion CO₂ capture
- Summarize preliminary findings on the potential of advanced technologies to significantly reduce the cost of CO₂ capture relative to current amine-based systems

1

S. Rubin, Carnegie Mellon

The IECM Framework

IECM: A Tool for Analyzing Power Plant Design Options

- A desktop/laptop computer simulation model developed for DOE/NETL
- Provides systematic estimates of performance, emissions, costs and uncertainties for preliminary design of:
 - PC, IGCC and NGCC plants
 - All flue/fuel gas treatment systems
 - CO₂ capture and storage options (pre- and post-combustion, oxycombustion; transport, storage)
- Free and publicly available at: <u>www.iecm-online.com</u>

Integrated Environmental

Control

IECM 8.0.2 @ 2012,

Model

USED WORLDWIDE BY INDUSTRY, GOVERNMENT, ACADEMIA & OTHERS

Technologies Currently in IECM (Version 8.0.2)

CO ₂ Capture & Storage Systems*	Coal Combustion Plants		Gasification Plants (IGCC)	IGCC and NGCC Plants
Post-Combustion Capture	Boiler/Turbine	Particulate Removal	Air Separation Unit	Gas Turbine
Conv. Amine; Adv. amines	Systems	Cold-side ESP; Fabric	Cryogenic	GE 7FA; GE 7FB
(FG+); Chilled ammonia;	Subcritical;	filter (Reverse air;		
Membrane systems; Aux.	Supercritical;	Pulse jet)	Slurry Preparation	Heat Recovery
NG steam or power gen.	Ultra-supercritical		& Coal Pretreatment	Steam Generator
(optional)		SO ₂ Removal		
	Furnace Firing	Wet limestone (Conv.:	Gasification	Steam Turbine
Oxv-Combustion Capture	Tangential: Wall:	F. oxidation:	Slurry-fed gasifier	
Flue gas recycle: ASU:	Cyclone	Additives): Wet lime:	(GE-O): Dry-fed	Boiler Feedwater
Chemical processing units		Lime spray dry	gasifier (Shell)	System
	Eurnace NOx		guarran (carran)	
Pre-Combustion Capture	Control	Solids Management	Syngas Cooling and	Process Condensate
Water gas shift + Selexol	LNB: SNCR:	Ash pond: Landfill:	Particulate Removal	Treatment
	SNCR+LNB:	Co-mixing: useful		
CO ₂ Compressor	Gas reburn	byproducts	Mercury Removal	Cooling Water
<u></u>		.,,,	Activated carbon	System
CO. Transport	Elue Gas NOx	Cooling and		Once-through: Wet
Pipelines (6 U.S. regions):	Removal	Wastewater Systems	H-S Removal	cooling tower: Dry
Other (user-specified)	Hot-side SCR	Once-thru cooline:	Selevol: Sulfinol	cooling tower, Dry
onici (user specifica)	not side beit	Wet cooling tower:	belexol, buillior	cooning
CO. Storage	Mercury Removal	Dry cooling:	Sulfur Recovery	Aux Equipment
Deep saline formation:	Carbon/sorbent	Chemical treatment:	Claus plant: Beavon-	Aux. Exputration
Geol Storage w/ FOR:	injection	Mech treatment	Stretford unit	
Other (user-specified)	injection	meen, acadhein	Succioid ullt	
onici (user-specifica)				

*Additional capture options under development include solid sorbent and calcium looping systems for postcombustion (PC or NGCC plants), a chemical looping system for IGCC, and an advanced oxy-combustion system Rubin Camerica Melloa

Current Post-Combustion Capture Technology

First Large-Scale Demonstration Project Now Operating

* Sask Power Boundary Dam (Canada); 110 MW coal-fired unit; * 90% capture +EOR (~ 1 Mt $\rm CO_2/yr$); Startup September 2014

Cost of Post-Combustion CCS for New Power Plants Using Current Technology

Increase in levelized cost for 90% capture

Incremental Cost of CCS relative to same plant type without CCS	Supercritical Pulverized Coal Plant	Natural Gas Combined Cycle
% Increases in power generation cost (\$/kWh)*	~ 60–80%	~ 30–45%

Capture accounts for most (~80%) of the total cost

*Added cost to consumers will be much smaller, reflecting the CCS capacity in the generation mix at any given time. Retrofit of existing plants typically has a higher cost

E.S. Rubin, Carnegie Mello

Advanced CO₂ Capture Technologies

Examples of Advanced Technologies: Everything beyond *Present*

Characteristics of Advanced Carbon Capture Systems

- The technology is not yet deployed or available for purchase at a commercial scale
 - Current stage of development may range from concept to large pilot or demonstration project
- Process design details still preliminary or incomplete
- Process performance not yet validated at scale, or under a broad range of conditions
- May require new components and/or materials that are not yet manufactured or used at a commercial scale

IECM Technologies for Post-Combustion CO₂ Capture

- Liquid solvent systems
- Amines (MEA, FG+)
- Chilled ammonia
- Ionic liquids*
- Solid sorbent systems
 - Amine-based*
 - Activated carbons*
 - Metal organic frameworks*
 - Calcium looping*
- Membrane systems
 - Once-through systems
 - Sweep gas (recycle) systems*
- Process energy supply options:
 Plant generator and steam cycle
 - Auxiliary NG boiler or power plant Purchased off-site

Rubin. Carnegie Mellon

In recent papers and presentations we analyzed several advanced technologies

Preliminary Findings for Overall Plant Performance

For designs achieving 90% CO₂ capture:

- Many of the advanced processes for post-combustion capture have energy penalties comparable to current amine systems, based on the current state of technology
- The two systems with better performance than amines were an advanced membrane design (2-stage, 2-step with air sweep) and a calcium looping system
 - *Caveat:* Effects of flue gas impurities on process and system performance remains to be determined

<u>Preliminary Conclusion:</u> Better capture materials and process designs are needed to get major performance improvements

E.S. Rubin, Carnegie Mell

How can we do a better job of estimating the cost of advanced technologies ?

Seven Simple Steps to Improve Cost Estimates for New Technologies

- 1. Use non-cost metrics for earliest-stage technologies
- 2. Define the proper system boundary for cost estimates
- **3.** Use standard costing methods
- 4. Quantify cost elements appropriately for FOAK plant
- 5. Use learning curves when estimating NOAK costs
- 6. Characterize and quantify uncertainties
- 7. Report cost metrics that are useful and unambiguous

A Standardized Costing Method is Now Available

E.S. Rubin, Carnegie Mellon

	PIOC	æss a	na	Projec	i	onungen
	Current Tec	hnology Status	5	Process Continger (% of process capits	ncy al) •	"Factor applied
	New concept with Concept with bence Small pilot plant de	limited data ch-scale data ata		40+ 30-70 20-35		the uncertainty performance a commercial-sc
	Full-sized modules Process is used co	s operated ommercially		5-20 0-10		based on the <u>c</u> technology.
n N	nost studies of nuch smaller p	advanced c process con	aptun tingei	e systems assur ncies (e.g., 0 to -	ne <20%)	
	EPRI Cost Classification	Design Effort	Pro (% of eng's and p	ject Contingency total process capital, g. &home office fees, process contingency)	•	"Factor covering additional equip
	Class I (~AACE Class 5/4) Class II (~AACE Class 3)	Simplified Preliminary		30-50 15-30		more detailed d definitive projec
	Class III (~ AACE Class 3/2) Class IV (~ AACE Class 1)	Detailed Finalized		10-20		SITE." - EPRI TAG

DOE/EPRI Guidelines for

to quantify n the technical nd cost of the le equipment' urrent state of PRI TAG

v Cost

the cost of nent or other result from a sion of a at an actual

> Idies assume ≤10%

Contingency Costs Assumptions for **Advanced Capture Technology**

Should be based on the <u>current</u> state of technology and design detail

Parameter	Typical Assumption	EPRI/DOE Guidelines*	Capital Cost Increase
Process Contingency (%TPC)	10%	~40%	~30%
Project Contingency (%TPC)	10%	~30%	~20%
TOTAL Contingency (%TPC)	20%	~70%	~50%

combustion processes with limited data

The total contingency cost for advanced capture processes is significantly under-estimated in most cost studies, leading to systematically low capital cost estimates

Insights on Technology Innovation

- Research on technology innovation shows that in addition to sustained R&D, "learning by doing" is needed to achieve commercial cost reductions. Thus, ...
- To realize *N*th-of-a-kind costs you have to build N plants

Conclusion: High capital costs will hinder the entry of new technologies

Another Challenge for New Technology: Baseline technology does not stand still

Acknowledgements

Support for this work was provided by the National Energy Technology Laboratory's Regional University Alliance (NETL-RUA), collaborative initiative, and by the Stanford University Global Climate and Energy Program (GCEP). Any opinions, findings conclusions or recommendations expressed in this material are those of the authors alone and do not reflect the views of any government agency or other organization.

E.S. Rubin, Carnegie Mellon

Thank You

rubin@cmu.edu

E.S. Rubin, Carnegie Mellon